
Cofree coalgebras over operads

and representative functions

M. Anel

September 16, 2014

Abstract

We give a recursive formula to compute the cofree coalgebra P∨(C) over any colored
operad P in V = Set,CGHaus, (dg)Vect. The construction is closed to that of [Smith]
but different. We use a more conceptual approach to simplify the proofs that P∨ is the
cofree P -coalgebra functor and also the comonad generating P -coalgebras.

In a second part, when V = (dg)Vect is the category of vector spaces or chain com-
plexes over a field, we generalize to operads the notion of representative functions of
[Block-Leroux] and prove that P∨(C) is simply the subobject of representative elements
in the ”completed P -algebra” P∧(C). This says that our recursion (as well as that of
[Smith]) stops at the first step.

Contents

1 Introduction 2

2 The cofree coalgebra 4
2.1 Analytic functors . 4
2.2 Einstein convention . 5
2.3 Operads and associated functors . 7
2.4 Coalgebras over an operad . 10
2.5 The comonad of coendomorphisms . 12
2.6 Lax comonads and their coalgebras . 13
2.7 The coreflection theorem . 16

3 Operadic representative functions 21
3.1 Representative functions . 23
3.2 Translations and recursive functions . 25
3.3 Cofree coalgebras and representative functions . 27

1

1 Introduction

This work has two parts. In a first part we prove that coalgebras over a (colored) operad P are coalgebras over
a certain comonad P∨ by giving a recursive construction of P∨. In a second part we prove that the recursion is
unnecessary in the case where the operad is enriched over vector spaces or chain complexes.

Cofree coalgebras and lax comonads The problem of constructing the cofree coalgebra P∨(X) over a dg-
operad P was solved in [Smith] following idea from [Fox]. We have prefered, however, a different construction to
prove more easily that the coalgebras over the comonad P∨ are the P -coalgebras. This result can be deduced
from [Smith] provided we know the category of P -coalgebras is comonadic but our approach does not use the
comonadicity theorem. We deduce directly from the construction of P∨ that it is a comonad and that coalgebras
over it coincides with P -coalgebras. We have also try to work with (symmetric) operads in general symmetric
monoidal category V and not only chain complexes.

We recall that P -algebras can easily be seen to be algebras over a monad P∼ where P∼ is the analytic functor
associated to P . The situation is not so simple for P -coalgebras. The ”completed P -algebra” functor X 7→ P∧(X) =∏
n[P (n), X⊗n], candidate to replace P∼, does not inherit a comonad structure from the operad structure of P in

general. (The obstruction for this is the non invertibility of the natural map [A,B]⊗ [A′, B′]→ [A⊗A′, B ⊗B′] in
V.) However P∧ is not far from begin a comonad.

The precise nature of P∧ is to be a ”lax comonad” by which we mean a lax monoidal functor from ∆op
+ to

some endofunctor category. Details are given in section 2.6. Essentially, a lax comonad is the data of functors P∧n
forming an augmented simplical diagram and natural maps α : P∧n P

∧
m → P∧n+m. If the maps α are isomorphisms,

then the lax comonad is a genuine comonad.
The definition of a coalgebra over a comonad extends to a notion of a coalgebra over a lax comonad. Then, it is

easy to see that P -coalgebras are exactly coalgebras over the lax comonad P∧. Moreover, we show in proposition
2.6.4 that if P∧ has a coreflection Q into the subcategory of comonads, then P∧-coalgebras coincides with Q-
coalgebras. This proves not only that the cofree P -coalgebra can be described as a the cofree Q-coalgebra but also
that the category of P -coalgebra is comonadic. Our main result is then the following.

Theorem 1.0.1 (thm. 2.7.11). The lax comonad P∧ has a comonadic coreflection P∨.

The proof of this theorem is the matter of section 2.7. We construct P∨ by a recursion explained at the beginning
of the section. Although the idea of this recursion looks fairly general, we have not been able to prove it was valid
without some mild assumptions on the symmetric monoidal category wher P lives (see Hypothesis 2.7.5). Those
assumptions are satisfied for categories such as sets, compactly generated Hausdorff topological spaces, toposes, in
fact any cartesian closed category, but also vector spaces and chain complexes over a field.

Representative and recursive elements In the second part of this work, we prove that the recursion to
construct P∨ stop at the first step when P in a operad in vector spaces of chain complexes over a field. Since
this first step is the same as in [Smith], this proves also that the recursion therein is unnecessary. Our approach
generalizes to operads methods for associative algebras; we start by recalling these.

In [Sweedler], the author gives a construction of the cofree coassociative coalgebra as a special dual of the free
algebra. Precisely, the duality functor sending a coalgebra C to the algebra C? has a right adjoint A 7→ A◦ and the
◦-dual of the free algebra T (X) is the cofree coalgebra T∨(X?) on the dual of X (see [Sweedler] or [Anel-Joyal] for
a comprehensive treatment). Then, in [Block-Leroux] and [Hazewinkel], the authors reduce the definition of A◦ to

2

the fiber product
A◦ //

��

A? ⊗A?

��
A?

m?
// (A⊗A)?

i.e. the elements of A◦ are those of A? whose diagonal decomposes in a finite sum of tensor products. Considering
that T (X)? is the completed tensor algebra T∧(X?) =

∏
n(X?)⊗n, they prove that the cofree coalgebra T∨(X) can

be defined as the fiber product

T∨(X) //

��

T∧(X)⊗ T∧(X)

��
T∧(X)

∆=m?
// T∧(X)⊗̂T∧(X)

where T∧(X)⊗̂T∧(X) is the completed tensor product and can be viewed as a subspace of T∧(X ⊕X).
T∨(X) is a subspace of T∧(X) and the authors call the elements of T∧(X) belonging to T∨(X) representative

elements. When X is of finite dimension, we have T∧(X) = (T (X?))? and elements of T∧(X) can be thought
as functions on T (X?). An element f ∈ T∧(X) is representative iff there exists a finite number of elements
gi, hi ∈ T∧(X) such that, for any a, b ∈ T (X?),

(∆f)(a⊗ b) = f(ab) =
∑
i

gi(a)⊗ hi(b).

The main lemma of [Block-Leroux] and [Hazewinkel] is to prove that the gi and hi are still representative functions,
i.e. that ∆f ∈ T∨(X)⊗T∨(X) ⊂ T∧(X)⊗T∧(X). To do this, they characterize representative elements as recursive
elements, i.e. elements f such that the family of functions a 7→ f(ab), parametrized by b ∈ T (X?), generate a finite
dimensional vector space in T∧(X). Then it is easy to prove that if f is recursive, gi and hi are recursive.

In order to do the same thing for coalgebras over an operad we need some adaptations. The completed algebra
T∧(X) can be replaced by the completed P -algebra P∧(X) =

∏
n[P (n), Xn]. Because the associative operad was

generated by a binary operation, the previous constructions involved only two terms tensor products of T∧(X).
But for a general operad, T∧(X)⊗ T∧(X) and T∧(X)⊗̂T∧(X) have to be replaced by bigger objects P∧(P∧(X))
and P∧2 (X) taking into account all operations of P (see section 2.6 for a definition of the latter). Now our main
result is the following, whose proof is the same as in [Block-Leroux] and [Hazewinkel] characterizing representative
elements as recursive ones.

Theorem 1.0.2 (thm. 3.3.1, cor. 3.3.2). The cofree P -coalgebra P∨(X) can be defined as the fiber product

P∨(X) //

��

P∧(P∧(X))

��
P∧(X)

m?
// P∧2 (X).

Representative and recursive elements for operads are defined in sections 3.1 and 3.2. The equivalence of the
two notions is proven in proposition 3.2.1.

3

Einstein convention We have chosen to develop this work for colored operads. Notations for such objects can
be quite heavy and we have found useful to introduce notational conventions inspired from Einstein summation
convention in tensor calculus. These conventions are introduced in section 2.2 and shorten the notations for ends
and coends of functors.

Acknowledgments This work was supported by the ETH in Zürich through the Swiss National Science Foun-
dation (project number 200021− 137778).

2 The cofree coalgebra

2.1 Analytic functors

We introduce analytic functors and colored operads following [Gambino-Joyal].

Free symmetric monoidal categories Let X be a set, the free symmetric monoidal category on X is noted
S(X). Its elements are sequences (x1, . . . , xn) of element of X of arbitrary but finite length. As in [Gambino-Joyal],
we shall often use the notation x to refer to an arbitrary element of S(X) when we do not need to reduce it to a
sequence of elements of X. The morphisms between two sequences (x1, . . . , xn) and (y1, . . . , yn) are defined to be
the permutations σ in the symmetric group Sn such that xi = yσ(i). There is no morphisms between two sequences
(x1, . . . , xn) and (y1, . . . , ym) if they don’t have the same length. In particular, S(X) is a groupoid and we have a
canonical identification S(X)op = S(X). We shall write Sn(X) the subgroupoid of sequences of length n, we have
S(X) =

∐
n S

n(X).
As constructed the category S(X) is not a V-category but an ordinary category when X is a set. We shall

denote also by S(X) the free V-category generated by S(X), the hom objects are defined as the coproducts of the
monoidal unit of V indexed by the sets S(X)(x, y).

The construction S(X) make sense when X is a small category or V-category rather than a set. In this context
S(X) can be proven to be the free symmetric monoidal category on X, that is, if C is a symmetric monoidal
V-category, there is an equivalence of categories between the category of V-functors X → C and that of symmetric
monoidal V-functors S(X)→ C (see [Gambino-Joyal] for details).

Free rigs If C is a small symmetric monoidal V-category, the category Pr(C) of V-preseheaves on C can be
equipped with the Day tensor product. This product is defined as the cocontinous extension in each variable of the
monoidal strucure of C. Precisely, we define C(−, x) ⊗Day C(−, y) as C(−, x ⊗ y) and, if F and G are presheaves
on C, using their description as colimit of representable presheaves, we define their tensor product by ”V-linearity”

(F ⊗Day G) =

(∫ x

F (x)⊗ C(−, x)

)
⊗
(∫ y

G(y)⊗ C(−, y)

)
=

∫ x,y

F (x)⊗G(y)⊗ C(−, x)⊗ C(−, y)

=

∫ x,y

F (x)⊗G(y)⊗ C(−, x⊗ y).

Let C be a V-category, tensored over V presentable as an ordinary category and equipped with a symmetric
monoidal structure enriched over V (such categories are called rigs in [Gambino-Joyal]). There exists an equivalence

4

http://www.math.ethz.ch/

of categories between V-cocontinuous symmetric monoidal V-functors Pr(C) → C (rig morphism) and symmetric
monoidal V-functors C→ C. This makes Pr(C) into the free rig generated by C.

In the case where C = S(X), the rig Pr(S(X)) is the free rig on X. Composing the previous equivalences,
there exists an equivalence of categories between V-cocontinuous symmetric monoidal V-functors Pr(S(X)) → C
and V-functors X → C.

S-distributors and analytic functors Let X and Y be two sets, a rig morphism F : Pr(S(Y))→ Pr(S(X)) is
equivalent to the data of a functor F : Y → Pr(S(X)) or equivalently to a (S(X), Y)-bimodule F : S(X)op×Y → V.
Such a bimodule is called an S-distributor in [Gambino-Joyal].

Forgetting the monoidal structure, the universal property of presheaves says that a cocontinuous functor
F : Pr(S(Y)) → Pr(S(X)) is equivalent to a functor S(Y) → Pr(S(X)), that is to a (S(Y), S(X))-bimodule
F : S(X)op × S(Y) → V. We shall call such a bimodule an S-bimodule between X and Y . The S-bimodule F
corresponding to an S-distributor F is given by

F(x; y) =

∫ z1,...,zn∈S(X)

S(X)(x; z1 . . . zn)⊗
⊗
i

F (zi; yi)

Equivalently F(−; y) can be caracterized as the iterated Day tensor product F (−; y1)⊗Day · · · ⊗Day F (−; yn).
The composition of two rig morphisms F : Pr(S(Y)) → Pr(S(X)) and G∼ : Pr(S(Z)) → Pr(S(Y)) give the

following composition formula for the corresponding S-distributors F and G:

(F ◦G)(x; z) =

∫ y∈S(Y)

F (y; z)G(x; y).

To a morphism of free rigs F : Pr(S(Y)) → Pr(S(X)) is associated an analytic functor F∼ : VX → VY given
by the formula

F∼(V)(y) =

∫ x∈S(X)

F (x; y)⊗ V (x1)⊗ · · · ⊗ V (xn).

This correspondance is natural in F and compatible with composition, that is we have (F ◦G)∼ = F∼ ◦G∼. This
correspondance is also fully faithful.

2.2 Einstein convention

In order to have more compact notation for ends and coends, we are going to make the following conventions
inspired from tensor calculus.

• Contravariant variables of functors will be noted in an upper position and covariant variables in an lower
position: a writting such as F a,bc refers to the values (we shall say the components) F (a, b, c) of a functor
F : Aop × Bop × C → V. The categories A, B, C in question should be clear from the context. They could
be ordinary categories of V-categories, in which case the functor F is assumed to be a V-functor.

• We shall use the same notation for natural transformation and write αab : F ab → Gab the component of a
natural transformation α : F → G.

• Tensor products in V shall sometimes be written with concatenation. For example the elements F aGb are the
components of the functor F ⊗ G : Aop × B → V with values F (a) ⊗ G(b). The internal hom of V shall be
noted [−,−], a formula such as [Fa, Gb] refers to the components of the functor [F,G] : Aop × B → V with
values [F (a), G(b)]. Notice the change of variance of a, if H = [F,G], then Ha = [Fa, Gb].

5

• In a notation like F a,bGb, when a letter is repeated twice, once in a lower and once in an upper position, we
will assume that an implicit coend is taken over this variable:

F a,bGb =

∫ b∈B
F (a, b)⊗G(b).

Similarly, in notations like [F a,b, Gb] or [F ab , Gb], when a letter appears twice, once on each variable of a hom
[−,−], both time in an upper position or in a lower position, we will assume that an implicit end is taken
over this variable:

[F a,b, Gb] =

∫
b∈B

[F (a, b), G(b)].

The categories over which to take the end or coend should be clear from the context.

• Notations such as F a,a, [F a, Ga], F a,bGbHb or [F aGa, Ha] are forbidden. But [F a, [Gba, H
b]] is correct.

We illustrate these conventions with some classical formulas concerning Yoneda’s lemma. We shall use these
formula in computations later. Let C be a small V-category, and Pr(C) be the category of V-presheaves, i.e. V-
functor Cop → V. The fully-faithfullness of Yoneda’s embedding C → Pr(C) can be written as the following end
formula, for any G : Cop → V ∫

c∈C
[C(c, d), G(c)] = G(d) ⇐⇒ [Ccd, Gc] = Gd.

Any presheaf G is also a weighted colimit of representable presheaves, this is best written as a coend∫ c∈C
F (c)⊗ C(d, c) = F (d) ⇐⇒ F cCdc = F d

which is another instance of Yoneda’s lemma.

We recall the fundamental adjunctions for ends and coend. For three functors F ab , Gbc and Ha
c , we have bijections

between the following sets:

transformations natural in a, b F ab G
b
c → Ha

c ,

transformations natural in a, c F ab → [Gbc, H
a
c],

transformations natural in b, c Gbc → [F ab , H
a
c].

For example, when all variable a, b, c belong to the same category C, the monoidal structure on C-bimodules induced
by the coend is the matrix product and the end compute its right adjoint in each variable.

When some of the categories of variables are of the type S(X), we introduce more conventions for functors, ends
and coends.

• Components of a functor F : Y × S(X)op → V shall be written as F xy and components of a functor F :

S(Y)× S(X)op → V shall be written as F xy .

For example the S-bimodule F associated to and S-distributor F as components

Fxy = S(X)xz1...znF
z1
y1 . . . F

zn
yn

6

• We shall use comma to separate the different variables of same variance of a functor to contrast with the use
of concatenation used for the product of elements in S(X). This way F x1,...,xn or Gx1,...,xn are the values of
functors of n variables but F x1...xn and Gx1...xn

are the values of functors of a single variable in S(X).

• In a formula like F xy G
z1
x1
. . . Gznxn

where the same letter x is repeated in upper and lower position once with an
overline and all others instances with indices, we shall assume that x = x1 . . . xn and take an implicit coend
over x ∈ S(X):

F xy G
z1
x1
. . . Gznxn

=
∐
N

∫ (x1,...xn)∈Sn(X)

F (x1 . . . xn, y)⊗G(z1, x1)⊗ · · · ⊗G(zn, xn).

The variables zi and their dependance on the size of x should be clear from the context.

For such a coend to make sense, the part of the formula where x appears with indices need to be a functor
on S(X). This functorality should always be clear from the context. In the example, the morphisms of S(X)
act on the Gs by permutations.

For example the composition of S-distributors is given in components by

(F ◦G)xz = F yz Gxy = F yz S(X)xz1...znG
z1
y1 . . . G

zn
yn .

2.3 Operads and associated functors

Let X be a set, an X-colored symmetric V-operad P (we shall say simply an operad) is the data of

• an S-distributor P with colors X, i.e. a functor P : S(X)op ×X → V

• a monoid structure on P for the composition of S-distributors.

The components of P shall be noted P xy or P (x; y). In case the set of colors as one element P xy depends only on
the length of x and is simply noted P (n).

In components, the unit is given by maps Idxy → P xy where Idxy are the components of the identity operad

(Idxy = 0, the initial object of V, unless x = y, in which case Idxy = 1, the monoidal unit of V) and the composition
is given by maps

P zy P
x1
z1 . . . P

xn
zn = P xy

(⊗
i

P zixi

)
−→ P x1...xn

y .

The associativity condition is equivalent to the commutation of the squares

P xy

(⊗
i P

zi
xi

(⊗
ji
P
ti,ji
zi,ji

))
��

// P xy
(⊗

i P
ti,1...ti,mi
xi

)
��

P z1...zny

(⊗
i,ji

P
ti,ji
zi,ji

)
// P

t1,1...tn,mn
y

We leave the reader to explicit in components the identity conditions.

We associate to P several objects.

7

• The analytic functor of P is the functor P∼ : VX → VX defined by

P∼(A)y = P xy A⊗x = P xy Ax1
. . . Axn

.

P∼ is the free P -algebra functor. Because P is an operad, P∼ is a monad.

• The co-analytic functor of P is the functor P∧ : VX → VX defined by

P∧(C)y = [P xy , C
⊗x] = [P xy , C

x1 . . . Cxn].

Remark 2.3.1. The notation for variance makes it clear that, if X was a category, this functor would be
defined on VXop

.

Remark 2.3.2. This functor could be called the ”completed P -algebra functor” but we shall not use this
name as the notation of variance makes it clear that there is no natural map P∼(A)→ P∧(A). (This is even
clearer when X is replaced by a category where P∼ and P∧ are not defined on the same categories.) However
there is a natural map P∼(A)? → P∧(A?) (where B? = [B,1] is the dual of A in V).

Nonetheless, it is this object P∧(C) that will play the role of T∧(X) in the construction of the cofree P -
coalgebra.

Remark 2.3.3. P being an operad does not imply that P∧ is a comonad. We give some detail as this is
somehow the source of all the trouble to construct the cofree P -coalgebra. Let us consider the following
diagram of natural maps

[P zy ,⊗i[P xi
zi , C

⊗xi]]

��
[P xy , C

⊗x] //

66

[P zy , [⊗iP xi
zi ,⊗iC

⊗xi]]

where the bottom map is induced by the multiplication of P and the vertical map is induced by the monoidal
structure. We have P∧(P∧(C))y = [P zy ,⊗i[P xi

zi , C
⊗xi]] and a map P∧(C)y → P∧(P∧(C))y would be a

diagonal lift in the previous diagram. But there can be such a lift, natural in C, only if the vertical is an
isomorphism, which is almost never the case.

• The PROP of P is the symmetric monoidal S(X)-category P defined by

Pxy = P z1y1 . . . P
zn
yn S(X)xz1...zn .

This definition of P is actually the Day product (P
(−)
y1 ⊗Day · · · ⊗Day P

(−)
yn)x.

The composition PyzPxy −→ Pxz is implied by the monoid structure of P and essentially given by

P y1z1 . . . P
yn
zn

(
P x11
y11 . . . P

x1m1
y1m1

)
. . .
(
P xn1
yn1

. . . P
xnmn
ynmn

)
−→ P

x11...x1m1
z1 . . . P

xn1...xnmn
zn .

The symmetric monoidal structure is given by concatenation on the objects and on the arrows the structure

maps PxyPx
′

y′
−→ Pxx′

yy′
are induced by the natural maps P x1

y1 . . . P
xn
yn −→ Px1...xn

y1...yn existing by definition of P as

a coend.

8

Remark 2.3.4. The composition of the operad P can be rewritten using P as a map P xy Pzx −→ P zy . It is

actually a particular case of composition in P since P xy = Pxy .

• To P is associated a cocontinous functor P : VS(X) → VS(X) given by

P(M)y = PxyMx

and a continous functor P∧ : VS(X)op → VS(X)op given by

P∧(N)y = [Pxy , Nx].

We emphasize the difference of variance on S(X) for the two functors. In particular, these two functors are
not adjoint to each other (although they do have adjoints but we shall not consider them).

Remark 2.3.5. Because P is a category, the functor P is a monad and the functor P∧ is a comonad. This is
actually the point of considering P∧, this comonadic functor will be a sort of replacement for the non-existent
comonadic structure on P∧.

Remark 2.3.6. The monoidal structure for P is responsible for the functor P to be monoidal if VS(X) =
Pr(S(X)op) is endowed with the Day product, but we shall not use this. The functor P∧ is only lax monoidal.

We shall also need four functors ε : VX → VS(X), ε : VX → VS(X)op , π : VS(X) → VX and π : VS(X)op → VX .
The ε are defined respectively by

ε(A)x = A⊗x = Ax1
. . . Axn

and ε(C)x = C⊗x = Cx1 . . . Cxn

with morphisms permuting the factors. The projections π are defined respectively by

π(A)x = Ax and π(C)x = Cx.

There is a number of formulas relating ε and π with the functors associated to P

• πε = id

• πPε = P∼

• πP∧ε = P∧

• εP∼ = Pε (and thus πPnε = (P∼)n)

• and there are maps αn,m : π(P∧)nεπ(P∧)mε→ π(P∧)n+mε.

The first relations are obvious. We prove that εP∼ = Pε:

(εP∼)(A)y =
(
P x1
y1 A⊗x1

)
. . .
(
P xn
yn A⊗xn

)
=

(
P x1
y1 . . . P

xn
yn

)
A⊗x1...xn

=
(
P x1
y1 . . . P

xn
yn

)
S(X)zx1...xn

A⊗z

= Pzy1...ynA⊗z = P(εA)y.

9

We have used Yoneda lemma to compute A⊗x1...xn = S(X)zx1...xn
A⊗z.

The maps π(P∧)nεπ(P∧)mε→ π(P∧)n+mε are constructed by iterating the canonical map⊗i[Ai, Bi]→ [⊗iAi,⊗iBi].

(π(P∧)nεπ(P∧)mε)(C)y = [P x1
y , . . . [Pxn

xn−1
,⊗i[P z1,ixn,i

, . . . [Pzm,i

zm−1,i
, C⊗zm,i] . . .]

→ [P x1
y , . . . [Pxn

xn−1
, [⊗iP z1,ixn,i

,⊗i[P
z2,i
z1,i

, . . . [Pzm,i

zm−1,i
, C⊗zm,i] . . .]

. . .

→ [P x1
y , . . . [Pxn

xn−1
, [⊗iP z1,ixn+1,i

, . . . [⊗iP
zm,i

zm−1,i
,⊗iC⊗zm,i] . . .]

Now we have to prove that the last term is π(P∧)n+mε(C)y. By Yoneda lemma, we have

⊗Ni=1C
⊗zm,i = C⊗zm,1...zm,N = [S(X)um

zm,1...zm,N
, C⊗um].

Using this and the definition of P, we get

[⊗iP
zm,i

zm−1,i
,⊗iC⊗zm,i] = [⊗iP

zm,i

zm−1,i
, [S(X)um

zm,1...zm,N
, C⊗um]]

= [⊗iP
zm,i

zm−1,i
S(X)um

zm,1...zm,N
, C⊗um]

= [Pum

zm−1,1...zm−1,N
, C⊗um].

Continuing, we get

[⊗iP
zm−1,i

zm−2,i
, [Pum

zm−1,1...zm−1,N
, C⊗um]] = [⊗iP

zm−1,i

zm−2,i
, [SX

um−1

zm−1,1...zm−1,N
, [Pum

um−1
, C⊗um]]]

= [⊗iP
zm−1,i

zm−2,i
SX

um−1

zm−1,1...zm−1,N
, [Pum

um−1
, C⊗um]]

= [Pum−1

zm−2,1...zm−2,N
, [Pum

um−1
, C⊗um]].

Iterating this, we finally get

[P x1
y , . . . [Pxn+1

xn
, [⊗iPz1,ixn+1,i

, . . . [⊗iP
zm+1,i

zm,i
,⊗iC⊗zm+1,i] . . .] = [P x1

y , . . . [Pxn+1

xn
, [Pu1

xn+1
, . . . [Pum

um−1
, C⊗um] . . .]

= π(P∧)n+mε(C)y.

2.4 Coalgebras over an operad

We recall first the notion of algebra for matter of comparison. An algebra over an operad P colored by X is an
object A in VX together with maps

P xy A⊗x = P xy Ax1
. . . Axn

−→ Ay

satisfying the unit condition: the composite Ay = IdxyA⊗x → P xy A⊗x → Ay must be the identity of Ay; and the
associativity condition: the square

P xy
(⊗

i P
zi
xi
A⊗zi

)
��

// P xy A⊗x

��
P z1...zny A⊗z1...zn // Ay

10

must commute.
The structure maps of a P -algebra A reduce to a single map P∼(A) → A in VX and the algebra condition

is precisely the condition for this map to endow A with the strucure of an algebra over the monad P∼: the unit
condition says that the composition A → P∼(A) → A should be the identity of A and the associativity condition
is the commutation of

P∼(P∼(A)) //

��

P∼(A)

��
P∼(A) // A.

The situation is not as nice for coalgebras.

A coalgebra over an operad P colored by X is an object C in VX together with a maps

CyP xy −→ C⊗x = Cx1 . . . Cxn ⇐⇒ δy : Cy −→ [P xy , C
⊗x]

satisfying the counit condition: the composite Cy −→ [P xy , C
⊗x] → [Idxy , C

⊗x] = Cy must be the identity of Ay;
and the coassociativity condition: the square

CyP xy
(⊗

i P
zi
xi

)
��

//⊗
i C

xiP zixi

��
CyP z1...zny

// C⊗z1...zn

must commute.
The structure maps of a coalgebra can be written as a single map δ : C → P∧(C). P∧ has a natural projection

P∧(C) → C and the counit condition is equivalent to the condition that C → P∧(C) → C is the identity of C.
However, P∧ is not a comonad and the coassociativity condition cannot be expressed with P∧ alone. The best we
can do to rewrite the coassociativity is the commutativity of the diagram

Cy //

��

[P xy , C
⊗x] // [P xy ,

⊗
i[P

zi
xi
, C⊗zi]]

��
[P zy , C

⊗z] // [P xy Pzx, C⊗x] [P xy , [Pzx, C⊗z]]

which can also be written as

C

δ

��

δ // P∧(C)
P∧(δ) // P∧(P∧(C))

α1,1

��
P∧(C)

π∆ε // (πP∧P∧ε)(C).

where we have used the map α1,1 : (P∧)2 → π(P∧)2ε and the comonad structure ∆ : P∧ → P∧P∧ defined in the
previous section. We shall see in the section 2.6 that this structure on C is that of a coalgebra over a lax comonad.

11

The situation is nicer for maps and they can be characterized using only P∧. A map of P -coalgebras is a map
f : C → D ∈ VX such that the equivalent diagrams

Cy //

fy

��

[P xy , C
⊗x]

[Px
y ,f

x]

��
Dy // [P xy , C

⊗x]

⇐⇒

C //

f

��

P∧(C)

P∧(f)

��
D // P∧(D)

commutes.

2.5 The comonad of coendomorphisms

We recall a few properties of Kan extensions. Considering a diagram

A

H
��

F // B

C
G

88

where B and C are bicomplete V-categories, the composition of functors admits both a left and a right adjoint. The
left Kan extension of F along H is the functor H!F such that there is a bijection between

natural transformations F → G ◦H,

and natural transformations H!F → G.

The right Kan extension of F along H is the functor H∗F such that there is a bijection between

natural transformations G ◦H → F ,

and natural transformations G→ H∗F .

If B = C and F = H, the universal property of Kan extensions turn F!F into a comonad and F∗F into a monad.
We shall put End∨(F) = F!F and End(F) = F∗F and call them respectively the comonad of coendomorphisms of
F and the monad of endomorphisms of F . They have the following universal properties. If G is a comonad, there
is a bijection between

left G-comodule structure F → G ◦ F ,

and comonad morphisms End∨(F)→ G.

If G is a monad, there is a bijection between

left G-module structures G ◦ F → F ,

and monad morphisms G→ End(F).

We shall be interested in the case where A = 1 is the category with a single objet with the monoidal unit of V
as object of endomorphisms. A functor 1→ B is simply an object X of B. End∨(X) and End(X) are the comonad
of coendomorphisms of X and the monad of endomorphisms of X. If G is a comonad, a G-coalgebra structure on
X is the same thing as a comonad morphism End∨(X) → G and if G is a monad, a G-algebra structure on X is
the same thing as a monad morphism G→ End(X).

12

Remark 2.5.1. In case A = VA, B = VB , C = VC and F , G and H are analytic functors, there exists an analytic
right Kan extension [H, F] of F along H. Recall our definition of Hzx =

(
⊗iHui

xi

)
S(X)zu1...un

, then, we have bijection
between

natural transformations (G ◦H)zy = GxyHzx → F zy ,

and natural transformations Gxy → (H∗F)xy =
[
Hzx, F zy

]
.

In the particular case where F = H : 1 → VB is a B-colored object X, the formula gives End(X)xy = [X⊗x, Xy],
the operad of endomorphisms of X. The previous considerations give that, if P is a B-colored operad, a P -algebra
structure on X is the same thing as a operad morphism P → End(X).

The functor [H, F] is different from H∗F since it represents the functor G 7→ Nat(G ◦ H,F) only when G is
analytic but there is a natural transformation [H, F] → H∗F which turns [H, F] into an analytic coreflection of
H∗F , that is, for G analytic, we have a bijection between

natural transformations G→ [H, F]

and natural transformations G→ H∗F .

The replacement of the monad End(X) by the operad End(X) simplifies the study of algebras over operads.
The notion of coalgebra can be defined using some operad coEnd(X) (see [Loday-Vallette]) but we shall see in the
next section that, for our purposes, it is the comonad End∨(X) which will be of use.

2.6 Lax comonads and their coalgebras

Recall that ∆+, the category of finite (possibly empty) ordinals is a monoidal category for the ordinal sum.
Recall also that, if (C,⊗) is a monoidal category, a monoidal functor ∆+ → (D,⊗) is the data of a monoid in C and
that a monoidal functor ∆op

+ → (D,⊗) is the data of a comonoid in C. We shall cal a lax comonoid a lax monoidal
functor ∆op

+ → (D,⊗). A morphism of lax comonoids is a lax monoidal natural transformation. The category of
comonoids embeds fully faithfully in the category of lax comonoids. In case D = (END(C), ◦) is the category of
endofunctors of a category C, we shall call a lax monoidal functor ∆+ → END(C) a lax comonad.

Recall the functors π and ε from section 2.3. Postcomposing by π and precomposing by ε creates a functor
END(VS(X))→ END(VX) which has no compatibility in general with the monoidal structures (we would need for
that a comparison between επ and the identity but there is none). Therefore, the image of a monoid or a comonoid
in END(VS(X)) is not in general a monoid of a comonoid in END(VX). However, for the functors P and P∧ we
can say something.

The formula πPnε = (P∼)n says precisely that the monad P is send to a monad P∼, i.e. that the composite
functor

∆+ −→ [VS(X),VS(X)] −→ [VX ,VX]
n 7−→ Pn 7−→ πPnε

is a monoidal functor. The situation is more complex for the functors P∧ and P∧ but it justifies the definition of a
lax comonad.

Proposition 2.6.1. The maps αn,m : π(P∧)nεπ(P∧)mε→ π(P∧)n+mε endow the composite functor

∆op
+ −→ [VS(X),VS(X)] −→ [VX ,VX]
n 7−→ (P∧)n 7−→ π(P∧)nε

with a lax monoidal structure.

13

Proof. The condition on the unit is trivial since π(Id)ε = Id. We need only to prove the associativity condition

π(P∧)nεπ(P∧)mεπ(P∧)`ε //

��

π(P∧)n+mεπ(P∧)`ε

��
π(P∧)nεπ(P∧)m+`ε // π(P∧)n+m+`ε.

This is a straightforward computation, essentially the argument reduces to the commutation of

⊗i[Ai,⊗ji [Bji , Cji]] //

��

[⊗iAi,⊗i ⊗ji [Bji , Cji]]

��
⊗i[Ai, [⊗jiBji ,⊗jiCji]] // [⊗iAi, [⊗i ⊗ji Bji ,⊗i ⊗ji Cji]].

The functor of proposition 2.6.1 is then a lax comonad. With a slight abuse in notation, we shall call again
P∧ this functor. If Q is a lax comonad, we shall use the classical convention for simplicial objects and denote is
components by Qn. In particular, the functors π(P∧)nε shall be abbreviated P∧n .

We now establish a few results on lax comonads and their coalgebras.

Let Q be a lax comonad on a category C, a coalgebra over Q is defined as an object C ∈ C together with a map
δC : C → Q1(C) such that

• (Unitality) the composition C → Q1(C)→ C is the identity of C

• (Coassociativity) the following diagram commutes

C
δ //

δ

��

Q1(C)
Q1(δ) // Q1Q1(C)

α1,1

��
Q1(C)

∆(C)
// Q2(C)

If C and D are two Q-coalgebras, a morphism of Q-coalgebras is defined as a map f : C → D ∈ C such that the
following diagram commutes

C
δC //

f

��

Q1(C)

Q1(f)

��
D

δD

// Q1(D)

We shall say that a Q-coalgebra C is cofreely generated by C → V (or simply cofree) if for any Q-coalgebra D,
the maps C → V induces a bijection between

14

Q-coalgebra morphisms D → C

and maps in VX D → V .

The following lemma is a direct consequence of the caracterisation of P -coalgebras of section 2.4. It also justifies
the previous definition.

Lemma 2.6.2. A P -coalgebra structure on C is the same thing as a coalgebra structure on the lax comonad P∧.

Recall End∨(C), the comonad of coendomorphisms of C, from section 2.5.

Lemma 2.6.3. Let Q be a lax comonad, then a Q-coalgebra structure on C is the same thing as a lax comonad
morphism End∨(C)→ Q.

Proof. A lax comonad morphism End∨(C)→ Q is a family of natural transformations γn : End∨(C)n → Qn such
that the squares

End∨(C)n ◦End∨(C)m // Qn ◦Qm

��
End∨(C)n+m // Qn+m

commute.
The map C → Q1(C) give a map End∨(C)→ Q1 from which we deduce maps γn : End∨(C)n → (Q1)n → Qn.

It is clear that the above square commute, we need only to check that the γn are natural in n. Decomposing arrows
in ∆+ in faces and degeneracies, the only non-trivial condition is the commutation of the square

End∨(C)

��

γ1 // Q1

��
End∨(C)2 // Q1Q1

// Q2

which is a consequence of the coassociativity condition on C.

Let D be a monoidal category. We shall say that a lax comonoid Q : ∆+ → D has a coreflection into comonoids
is there exist a comonoid Q′ and a lax comonoid morphism Q′ → Q which induces, for any comonoid R, a bijection
between lax comonoid morphisms R→ Q and comonoid morphisms R→ Q′.

Proposition 2.6.4. Let Q be a lax comonad on a category C having a coreflection Q′ into comonads, then

1. there is an equivalence of categories between Q-coalgebras and Q′-coalgebras;

2. the cofree Q-coalgebras coincide with the cofree Q′-coalgebras;

3. and the category of Q-coalgebras is comonadic over C.

Proof. (1) Lemma 2.6.3 proves that coassociative maps C → Q(C) and C → Q′(C) are in bijection. We need only
to prove that the notion of morphisms coincides, but this is because Q′ → Q is a natural transformation.

(2) is a consequence of (1).
(3) By (2) the forgetful functor U : QCoalg → C has a right adjoint given by Q′, the comonadicity is then the

statement (1).

15

Proposition 2.6.4 applies in particular to the lax comonad P∧ of an operad P . The purpose of the next chapter
is to prove that P∧ admits a comonadic coreflection.

2.7 The coreflection theorem

We are going to construct the comonadic coreflection P∨ of the lax comonad P∧ recursively. The method will
use specific properties of P∧ as well as conditions of the monoidal category V and seems difficult to generalize
although the principle guiding it looks quite general.

Let us consider the following diagram whose terms we are going to explain.

P∨

��

// (P∨)2

��

//// (P∨)3

��

////// (P
∨)4

��

//////// (P
∨)5

��

. . .

...

��

...

��

...

��

...

��

...

��
Q4

��

// (Q3)2

��

////

(4′′)

(Q2)3

��

//////

(4′)

(Q1)4

��

////////

(4)

(P∧)5

��

. . .

Q3

��

// (Q2)2

��

////

(3′)

(Q1)3

��

//////

(3)

(P∧)4

��

Q2

χ2

��

δ2 // (Q1)2

(χ1)2

��

////

(2)

(P∧)3

��

Q1

χ1

��

δ1 // (P∧)2

α1,1

��
P∧

∆
// P∧2

∆(1)
//

∆(2)

// P∧3
////// P
∧
4

//////// P
∧
5 . . .

(D)

The plain arrows are the structure maps of P∧. The bottom row is the simplicial diagram of P∧ but we have
represented only the degeneracy maps (the diagonals of the comonad structure). The vertical plain arrows are the
lax structure of P∧. The dotted arrows and the objects Qk will be defined by some limits. Finally, the dashed
arrows will be constructed from the dotted ones.

The functor P∧ has a counit P∧ → Id but is missing a diagonal. The construction we are going to describe
focus on how to build such a diagonal. The counit will be dealt with afterwards. The general idea is the following.
We would like to have a diagonal map P∧ → P∧P∧ lifting the diagonal ∆ : P∧ → P∧2

(P∧)2

α1,1

��
P∧

∆
//

?

<<

P∧2 .

16

We can consider the universal domain for the existence of such a lift, that is the fiber product Q1 of (P∧)2 → P∧2 ←
P∧, but this is not enough since we want the diagonal Q1 → (P∧)2 to lift into Q1 → (Q1)2

(Q1)2

��
Q1

?

<<

δ1 //

��

(P∧)2

α1,1

��
P∧

∆
// P∧2 .

So we consider Q2 the fiber product of (Q1)2 → (P∧)2 ← Q1 and etc. ad infinitum. Let Q∞ be the limit of the
Qks, it is unfortunately false that the diagonal maps Qk+1 → (Qk)2 will define a diagonal δ : Q∞ → (Q∞)2. But
this will be true if (Q∞)2 is proven to be the limit of the tower of (Qk)2. This will be the main issue at hand,
addressed in lemma 2.7.9.

Another issue is that the diagonal thereby created has no reason to be coassociative. To ensure this fact we
need to defined Q2 as the limit of the bigger diagram

(Q1)2

(χ1)2

��

δ1χ1 //
χ1δ1

// (P∧)3

��

Q1

χ1

��

δ1 // (P∧)2

��
P∧

∆
// P∧2

∆(1)
//

∆(2)

// P∧3 ;

and Q3 as the limit of

(Q2)2

��

//// (Q1)3

��

////// (P
∧)4

��

Q2

χ2

��

δ2 // (Q1)2

��

//// (P∧)3

��

Q1

χ1

��

δ1 // (P∧)2

��
P∧

∆
// P∧2

∆(1)
//

∆(2)

// P∧3
////// P
∧
4

etc.1 This way, at the limit, we will have a full simplical structure on the (Q∞)n (taking into account the non-drawn
face maps), turning Q∞ into a comonad. Moreover, by construction, we will have a canonical morphism of lax
comonads Q∞ → P∧. Proposition 2.7.11 will prove that this morphism is the coreflexion.

1In fact, the diagram defining Qk can be simplified (see remark 2.7.3)

17

The last issue is to construct the arrows of the diagrams defining the Qis, that is the dashed arrows of the
diagram (D). We put Q0 = P∧ and we call χn the canonical map Qn → Qn−1. Then, the dashed vertical arrows
(Qn)k → (Qn−1)k are simply tensor products (for the composition of functors) of χns. The dashed horizontal arrows,

named δ
(n,i)
k : (Qk)n → (Qk−1)n+1, are constructed from the two maps χk : Qk → Qk−1 and δk : Qk → (Qk−1)2 by

the formula
δ

(n,i)
k := χk . . . δk . . . χk : (Qk)n → (Qk−1)n+1

where δk is applied on the i-th factor.

Each δ
(n,i)
k is defined over a degeneracy map ∆(i) : P∧n → P∧n+1. The following lemmas ensure that the dashed

arrows commute with the plain arrows.

Lemma 2.7.1. The following squares (denoted (n) in the diagram) commute

(Q1)n
δ
(n,i)
1 //

α(χ1)n

��

(P∧1)n+1

α1,...,1

��
P∧n

∆(i)
// P∧n+1.

Proof. We can factor these squares as

(Q1)i−1Q1(Q1)n−i

(χ1)n

��

(χ1)i−1δ1(χ1)n−i

// (P∧)i−1(P∧)2(P∧)n−i

α(α1,1)α

��
(P∧)i−1P∧(P∧)n−i

α

��

α∆α
// (P∧)i−1P∧2 (P∧1)n−i

α

��
P∧n // P∧n+1.

The commutation of the top square reduces to the definition of Q1 and that of the bottom square is the lax structure
of Q.

Lemma 2.7.2. The following squares (denoted (n′) and (n′′) in the diagram) commute

(Qk+1)n
δ
(n,i)
k //

(χk+1)n

��

(Qk)n+1

(χk)n+1

��
(Qk)n

δ
(n,i)
k−1 // (Qk−1)n+1.

Proof. Easy consequence of the definition of Qk+1.

Remark 2.7.3. The diagram defining Qk+1 can be reduced to the coinitial diagram

(Qk)2

��

//// (Qk−1)3

Qk // (Qk−1)2.

18

Somehow, this is a way to say that the higher associativity conditions are implied by the associativity. Therefore,
we could have restricted our simplicial diagrams to 2-truncated simplicial diagrams, even for the diagram (D), to
defined Q∞ and its structure. However, doing so, it would not have been trivial that the maps Qn∞ → P∧n are
natural transformations of simplicial lax monoidal functor.

Remark 2.7.4. The recursion used in [Smith] is not the same as our. In this reference, the equivalent Lk of our
Qk are defined by cartesian squares

Lk+1
//

��

P∧Lk

��
Lk // P∧2 .

However, we have Q1 = L1 and this will be useful in remark 3.3.3.

We now turn to the main results of the section. Lemma 2.7.9 which is the main point of our proof requires some
hypothesis that we state before.

We shall call a countable intersection, the data of a diagram · · · → Ak+1 → Ak → . . . A0 indexed by N where
all maps are monomorphisms.

Hypothesis 2.7.5. We are going to assume the following property on the monoidal category (V,⊗):

• the canonical natural transformation [A,A′]⊗ [B,B′]→ [A⊗B,A′ ⊗B′] is a monomorphism,

• the functor ⊗ commute with countable intersections in each variable.

These hypothesis are satisfied for the following monoidal categories: the cartesian category Set of sets, any
topos, and in fact any cartesian category (for example CGH spaces); the category Vect of vector spaces, and the
category dgVect of chain complexes over a field.

Condition (2) is trivial in cartesian categories, here is a proof for Vect and dgVect.

Lemma 2.7.6. Let A be an object in Vect (or dgVect), then the functor V 7→ A ⊗ V commutes to countable
intersections.

Proof. Let · · · → Vk+1 → Vk → . . . V0 be a countable intersection of subobjects of an object V0 and let V∞ be the
limit of the intersection. Let V ′k be a complement of Vk+1 in Vk, we have Vk = V∞ ⊕

⊕
i>k V

′
i . We deduce that

A ⊗ Vk = A ⊗ V∞ ⊕
⊕

i>k A ⊗ V ′i and lim(A ⊗ Vk) = A ⊗ V∞. The proof can be adapted for dg-vector spaces by
remarking that intersections of complexes are computed degreewise on the underlying graded objects.

Hypothesis (2) will be useful because of the following fact.

Lemma 2.7.7. Let (C,⊗) be a symmetric monoidal category, then the functor V 7→ V ⊗n commutes to all sifted
limits preserved by ⊗ in each of its variables.

Proof. We prove the result for n = 2, the general proof is similar. Let I be the opposite of sifted category and
V : I → C a contravariant diagram. We assume that, for any A ∈ C, the functor A⊗− commutes to the limit of V .
Then we have (limi Vi)⊗ (limi Vi) = limi,j Vi ⊗ Vj . Because Iop is sifted we have also limi,j Vi ⊗ Vj = limi Vi ⊗ Vi.
This proves that limi(Vi ⊗ Vi) = (limi Vi)⊗ (limi Vi).

19

Since N is filtered, hence sifted, hypothesis (2) implies that the functors V 7→ V ⊗n preserve countable intersec-
tions.

We need a few more lemmas in order to prove that Q∞ is the comonadic coreflection of P∧.

Lemma 2.7.8. 1. All Qk preserve countable intersections.

2. All maps χk : Qk → Qk−1 are monomorphisms.

Proof. We are going to prove both statements with an induction. We put Q0 = P∧ and Q−1 = P∧2 and start at
k = 0.

(1) Using lemma 2.7.7, we deduce thatQ0 preserves countable intersections. (2) We have (Q0)2(V) = [P xy ,⊗i[P zixi
, V ⊗zi]

and Q−1(V) = [P xy , [P
z
x , V

⊗z]]. ⊗i[P zixi
, V ⊗zi]→ [P zx , V

⊗z] is a monomorphism by hypothesis 2.7.5. Ends preserves
monos in their second variable, hence (Q0)2 → Q−1 is a monomorphism.

Now, we assume that the statements are true at rank ≤ k for some k. By remark 2.7.3, Qk+1 is the limit of the
diagram

(Qk)2

��

//// (Qk−1)3

Qk // (Qk−1)2.

(1) By hypothesis, Qk, Qk−1 and their composites preserve countable intersections. The limit product of functors
preserving some limits also preserves those limits since fiber products are computed termwise in functor categories.
This proves that Qk+1 preserves countable intersections. (2) Let Q′k+1 be the pullback of (Qk)2 → (Qk−1)2 ← Qk.
The map Q′k+1 → Qk is a mono as the pullback of the mono (Qk)2 → (Qk−1)2. Then Qk+1 can equivalently be
defined as the equalizer of Q′k+1 → (Qk)2 ⇒ (Qk−1)2, hence Qk+1 → Q′k+1 is a mono and so is Qk+1 → Qk by
composition.

In fact, we have proved that the Qks preserve all limits preserved by P∧ and P∧2 .

Lemma 2.7.9. Under hypothesis 2.7.5, (Q∞)n is the limit of the tower of (Qk)n.

Proof. We are going to prove the case n = 2 to simplify notations, the general proof is similar. By lemma 2.7.8, we
deduce that limQk is a countable intersection of functors and that

(Q∞)2 = (limQ`)(limQk) = limQ`(limQk) = lim
k,`

Q`Qk.

The category N indexing the countable intersection is sifted, we deduce that limk,`Q`Qk = limkQkQk, which proves
the result.

Lemma 2.7.10. Q∞ is a comonad.

Proof. From lemma 2.7.9 we deduce that the maps (Qk)n → (Qk−1)n+1 lift to maps (Q∞)n → (Q∞)n+1. Moreover
the definition of the (Qk)n → (Qk−1)n+1 ensure that all simplicial identities are statisfied. This prove that Q∞ has
a coassociative codiagonal. Now, we need to check that is has a compatible counit.

P∧ has a counit ε : P∧ → Id from which we define maps εk : Qk → P∧ → Id (k = 0, . . . ,∞). Then, from

the εks, we can construct maps ε
(i)
k : (Qk)n → (Qk)n−1 by applying εk to the i-th factor. Using inductively the

definition of Qk, we can lift the maps ε
(i)
k into maps η

(i)
k : (Qk)n → (Qk+1)n−1 and complete the dashed arrows of

the diagram (D) into augmented truncated simplicial diagrams. Using lemma 2.7.8 we prove that the limits of the

maps η
(i)
k are the maps ε

(i)
∞ and we get a full augmented simplicial diagram on the (Q∞)ns.

20

Theorem 2.7.11. Q∞ is the comonadic coreflexion of P∧.

Applying proposition 2.6.4, we get the final result.

Corollary 2.7.12. Q∞ is the cofree P -coalgebra comonad.

Proof of 2.7.11. Let us first prove that there is a canonical morphism of lax comonads to Q∞ → P∧. The con-
struction of Q∞ has produced maps (Q∞)n → (P∧)n → P∧n . Recall from the proof of lemma 2.7.10 the simplicial
diagram giving the comonad structure of (Q∞)n. Lemma 2.7.1 proves that the composition (Q∞)n → P∧n are
natural with respect to simplicial degeneracies maps. An analogous proof would show that they are also compatible
with the faces maps. This construct a morphism of lax comonad Q∞ → P∧. Let us prove that it is a coreflection.

Let R be a comonad with a lax comonad morphisms R→ P∧. In particular this data gives a diagram

R

��

// R2

��
(P∧)2

��
P∧ // P∧2

and a map R→ Q1 factorizing R→ P∧. From this map we get a commutative diagram

R

��

// R2

��

//// R2

��
(Q1)2

��

//// (P∧)3

��

Q1

��

// (P∧)2

��
P∧ // P∧2

//// P∧3 ;

and thus a map R → Q2 factorizing R → P∧. Continuing this way, we construct a factorisation R → Q∞ → P∧.
By construction the map R→ Q∞ extends to a map of augmented simplicial diagrams, that is a map of comonoids.
This proves that Q∞ → P∧ is the comonadic coreflection.

3 Operadic representative functions

In this section, the basic symmetric monoidal category V is assumed to be Vect or dgVect. In both cases the
unit of the tensor product is the ground field k. If V ∈ V, we shall denote by V ? = [V, k] the dual of V and by V ??

the double dual of V . The canonical map [A,B]⊗ [A′, B′]→ [A⊗A′, B⊗B′] induces maps A?⊗ (A′)? → (A⊗A′)?
and maps A? ⊗B′ → [A,B′].

21

The main consequences of the hypothesis on V are given in the following lemmas. In the whole section, we
shall give proofs only in the case of Vect, they can be adapted to dgVect with minor changes to take care of the
differential and the grading. Also the notion corresponding to finite dimension vector spaces has to be complexes
whose total space are finite dimensional.

Lemma 3.0.13. 1. A map f : V1 ⊗ V2 → k is in (V1)? ⊗ (V2)? iff it factors by a finite dimensional space.

2. A map f : V1 → V2 is in (V1)? ⊗ V2 iff it factors through a finite dimensional space.

Proof. (1) Let us suppose that f : V1⊗V2 → k factors through a finite dimensional space W and a map g : W → k.
We can assume that W is a tensor product of W1 ⊗W2 where Wi is a finite dimensional quotient of Vi. Let (αji)

be a basis of (Wi)
?, then g =

∑
i,j gi,jα

i
1 ⊗ α

j
2 for some coefficients gi,j ∈ k. Let us call βji the image of αji by

(Wi)
? → (Vi)

?, then f =
∑
i,j gi,jβ

i
1⊗ β

j
2. Reciprocally, if f ∈ (V1)?⊗ (V2)?, it can be written as f =

∑
j∈J γ

j
1 ⊗ γ

j
2

where γji ∈ Vi and J is finite. The collection of γji for i fixed define a map Vi → kJ , then f factors through
V1 ⊗ V2 → kJ ⊗ kJ .

(2) Let us suppose that f : V1 → V2 facror through a finite dimensional space W and a map g : W → V2. We
can assume W is a quotient of V1. Let (αj) be a basis of W ?, then g =

∑
i bi⊗αi1 for some coefficients bi ∈ V2. Let

us call βj the image of αj by W ? → (V1)?, then f =
∑
i bi ⊗ βi1. Reciprocally, if f ∈ (V1)? ⊗ V2, it can be written

as f =
∑
i∈I bi ⊗ γi where γi ∈ (V1)?, bi ∈ V2 and I is finite. The γi define a map Vi → kI and f factors through

kI .

Lemma 3.0.14. 1. If A′ ⊂ A and B′ ⊂ B in V, then A′ ⊗B ∩A⊗B′ = A′ ⊗B′.

2. For Ai ⊂ A and Bi ⊂ B (i = 1, 2), we have (A1 ⊗B1) ∩ (A2 ⊗B2) = (A1 ∩A2)⊗ (B1 ∩B2).

Proof. (1) We use decompositions A = A′ ⊕ A′′ and B = B′ ⊕ B′′. We have A⊗ B = A′′ ⊗ B′′ ⊕ A′ ⊗ B′′ ∩ A′′ ⊗
B′ ⊕A′ ⊗B′. The result follows from A′ ⊗B = A′ ⊗B′ ⊕A′ ⊗B′′ and A⊗B′ = A′ ⊗B′ ⊕A′′ ⊗B′.

(2) We use (1) to get Ai⊗Bi = Ai⊗B ∩A⊗Bi, then the result is a consequence of the left exactness of ⊗.

If X is a set, and V ∈ VX we shall denote by V ? the object of VX which is the componentwise dual of V .
Recall that, if X were a category, V ? would live in VXop

, hence we are going to use the contravariant notation for
components of V ? when V has covariant components and reciprocally: (A?)x = (Ax)? and (C?)x = (Cx)?.

Monomorphisms in VX are componentwise monomorphisms in V. For V ∈ VX , the canonical map V → V ?? is
a monomorphism. If P is an X-colored operad and A ∈ VX , there exists a canonical map P∧(A?)→ P (A)? given
in components by

[P xy , (A
?)⊗x] −→ [P xy , (A⊗x)?] = [P xy A⊗x, k].

This map is a monomorphism since ends preserve limits in their second variable.

The following lemma is a useful property of the P∧n when V = Vect or dgVect.

Lemma 3.0.15. The functors P∧n preserve intersections of subobjects (fiber products of monomorphisms). In
particular, they preserves monomorphisms.

Proof. By lemma 3.0.14, the functor ε : VX → VS(X)op sending C to the family of C⊗x preserves intersections of
subobjects and thus monomorphisms. Then P∧n has the same property since it is the composition of ε with an
end.

22

The lemma proves that the canonical map P∧(C)→ P∧(C??) is a monomorphism. Composing with the previous
map we get a monomorphism

P∧(C) −→ P∧(C??) −→ P (C?)?.

We can then faithfully think elements of P∧(C) as functions on P (C?).

3.1 Representative functions

For V ∈ VX , we shall call an element of V any element of any of the components V x (or Vx) of V .
Let P be an X-colored operad and A ∈ VX , for any y ∈ X, we shall say that a linear map f : Py(A) → k, or

equivalently an element of (P (A)?)y, is a representative function if, for any operation µ ∈ P xy , there exists some

functions g(k,i)(µ,−) (depending linearly on µ) such that, for any ai ∈ P (A) of adequate colors,

f(µ(a1, . . . , an)) =
∑
i

g(1,i)(µ, a1)⊗ · · · ⊗ g(n,i)(µ, an).

We shall abbreviate such a sum using Sweedler’s notation:

f(µ(a1, . . . , an)) = g(1)(µ, a1)⊗ · · · ⊗ g(n)(µ, an).

We shall also use the notation ∆(µ)f for the composition fµ.

Example 3.1.1. If P = As is the associative operad, and µ is taken to be the binary multiplication operation, this
definition implies that a representative function is representative in the sense of [Block-Leroux, Hazewinkel]. The
two conditions are in fact equivalent. But, for an operad where no generators have been specified, we are forced to
consider the stronger condition with all operations.

Let P rep(A)y ⊂ (P (A)y)? be the set of representative functions. Another way to understand the definition if to
say that P rep(A)y is defined as the fiber product

P rep(A)y //

��

[P xy ,⊗i(P (A)xi)
?] = P∧(P (A)?)y

��
(P (A)y)?

∆ // [P xy , (⊗iP (A)xi
)?] = (P 2(A)y)?.

The component of ∆f in [P xy , (⊗iP (A)xi)
?] (no end taken here) evaluated at µ is ∆(µ)f = fµ. f is representative

iff
∆(µ)f = fµ ∈

⊗
i

(P (A)xi
)?.

We shall call P 2? the functor A 7→ P 2(A)?.

Lemma 3.1.2. There exists a commutative diagram

P∧(C) //

��

P (C?)?

��

(P∧)2(C)oo

��
P∧2 (C) // P 2?(C?) P∧(P (C?)?)oo

23

Proof. In components the left square is

[P xy , C
⊗x] //

��

[P xy , ((C
?)x)?]

��
[P zy Pxz , C⊗x] // [P zy Pxz , ((C?)x)?]

which is a simple consequence of the dinaturality of the end in its variables. The reasoning is the same for the right
square.

We saw in lemma 2.7.8 that the map P∧(P∧(C))→ P∧2 (C) is a monomorphism. We shall say that an element
of P∧(C) is representative if its image by ∆ : P∧(C) → P∧2 (C) belongs to P∧(P∧(C)), that is the subobject of
representative elements is the object Q1(C) of section 2.7 defined as the fiber product

Q1(C) //

��

(P∧)2(C)

��
P∧(C)

∆ // P∧2 (C).

The following lemma is useful to work with representative elements as representative functions are more handy.

Lemma 3.1.3. An element of P∧(C) is representative iff it is a representative function in P (C?)?.

Proof. We have the following commutative cube

Q1(C) //

��

%%

(P∧)2(C)

��

''
P rep(C?) //

��

P∧(P (C?)?)

��

P∧(C) //

%%

P∧2 (C)

''
P (C?)? // P 2?(C?).

The back face is cartesian by definition of Q1. The front face is cartesian by definition of P rep(C?). The base and
right faces are commutative by lemma 3.1.2. Then, the left and top faces are deduced from the commutation of
other faces and by the cartesian property of the front face.

The lemma will be proved if the left face is proven to be cartesian, this will be a consequence of the three others
vertical faces being cartesian. We need to prove that the right face is cartesian. Since the end with P xy preserves
limits, it is enough to prove that the square

⊗i[P zixi
, C⊗zi]

��

// ⊗i(P (C?)xi
)?

��
[⊗iP zixi

, C⊗z1...zn] // (⊗iP (C?)xi)
?

24

is cartesian. This follows essentially from the cartesian squares in V

[A,A′]⊗ [B,B′] //

��

[A,A′′]⊗ [B,B′′]

��
[A⊗B,A′ ⊗B′] // [A⊗B,A′′ ⊗B′′]

where A′ ⊂ A′′ and B′ ⊂ B′′. This can be proven using a decomposition A′′ = A′ ⊕A′′′ and B′′ = B′ ⊕B′′′.

3.2 Translations and recursive functions

We keep the previous notations. Let f be a function P (A)y → k, let us fix an operation µ ∈ P xy together with a
distinguished position 1 ≤ k ≤ n (corresponding to the color xk) and let us fix elements ai ∈ P (A)xi

for any i 6= k.
The µ-translation of f by the (ai) is the function (∆(µ)f)k(ai) : P (A)xk

→ k defined by

(∆(µ)f)k(ai)(b) = f(µ(a1, . . . , b, . . . an))

where b is put in the kth position. We shall say that a function f : P (A)y → k is recursive if, for every operation
µ ∈ P , the space of all µ-translations is of finite dimension. We emphasize that this finiteness condition is for every
µ separately. The space of µ-translations is properly defined as the image of the map

λk(fµ) : P (A)x1
⊗ · · · ⊗ P (A)xn

−→ (P (A)xk
)?

A1, . . . an 7−→ b 7→ f(µ(a1, . . . , b, . . . an))

where P (Axk
) is missing in the tensor product. By lemma 3.0.13, f is recursive iff

∆(µ)f = fµ ∈
⋂
k

(⊗
i 6=k

P (A)xi

)?
⊗ (P (A)xk

)?.

The following proposition is the main tool for representative functions.

Proposition 3.2.1. A function f is representative iff it is recursive.

Proof. The proposition will be proven if we prove that
⋂
k(⊗i6=kP (A)xi)

?⊗ (P (A)xk
)? = ⊗i(P (A)xi)

?. The obvious
inclusion proves that any f representative is recursive. The other inclusion is a consequence of the following
lemma.

Lemma 3.2.2. Let f ∈ (
⊗n+1

i=1 Vi)
? such that, for any k ≤ n, f ∈ (Vk)? ⊗ (

⊗
i 6=k Vi)

?, then f ∈
⊗n+1

i=1 (Vi)
?.

Proof. The result is obvious for n = 0, 1. We prove the rest by an induction incremented at n = 2. Let f ∈
(V1 ⊗ V2 ⊗ V3)? If f ∈ (V1)? ⊗ (V2 ⊗ V3)?, then for every x2 ∈ V2 f(−, x2,−) ∈ (V1)? ⊗ (V3)?, hence f is in
f ∈ [V2, (V1)? ⊗ (V3)?]. If moreover f ∈ (V2)? ⊗ (V1 ⊗ V3)?, we can take out the V2 factor and this proves that
f ∈ (V2)? ⊗ (V1)? ⊗ (V3)?.

Now we assume the property is true for every sequence Vi of length n+ 1. Let Vi be a sequence of length n+ 2.
We put V ′k =

⊕
i 6=k Vi and V ′′k,` =

⊕
i6=k,` Vi. We have⋂

k≤n+1

(Vk)? ⊗ (V ′k)? =
⋂

2≤k≤n+1

(Vk)? ⊗ (V ′k)? ∩
⋂
k≤n

(Vk)? ⊗ (V ′k)?

25

By hypothesis, with Vn+1 ⊗ Vn+2 playing the role of Vn+1, we have⋂
k≤n

(Vk)? ⊗ (V ′k)? =
⊗
k≤n

(Vk)? ⊗ (Vn+1 ⊗ Vn+2)?.

Similarly we have ⋂
2≤k≤n+1

(Vk)? ⊗ (V ′k)? =
⊗
k≤n

(Vk)? ⊗ (V1 ⊗ Vn+2)?.

Intersecting those two terms we get⊗
2≤k≤n

(Vk)? ⊗
(

(Vn+1)? ⊗ (V1 ⊗ Vn+2)? ∩ (V1)? ⊗ (Vn+1 ⊗ Vn+2)?
)
.

Using the computation for n = 2, the last part is (V1)? ⊗ (Vn+1)? ⊗ (Vn+2)? and finally⋂
k≤n+1

(Vk)? ⊗ (V ′k)? =
⊗

1≤k≤n+2

(Vk)?.

The translation of a translation is again a translation, hence any translation of a recursive function is recursive
since subspaces of a finite dimensional space are finite dimensional. This proves the following lemma.

Lemma 3.2.3. Any translation of a representative function is representative.

The following proposition is the main result for representative functions.

Proposition 3.2.4. If f is representative, then the g(i) in ∆(µ)f = g(1)⊗· · ·⊗g(n) can be chosen to be representative
functions.

Proof. If f is representative, it is recursive and the space of translations (∆(µ)f)k(ai) is finite dimensional. Let us

fix a basis of this space given by some (n− 1)-uplets αj = (αji)i 6=k and put gj = (∆(µ)f)k
(αj

i)
. By lemma 3.2.3 the

gj are representative functions and f can be written f =
∑
gj ⊗ hj for some hj ∈

⊗
6̀=k(P (A)x`

)?. As this is true

for every k, this proves that ∆(µ)f is in fact in the subspace of
⊗

`(P (A)x`
)? given by⋂

k

P rec(A)xk
⊗
⊗
` 6=k

(P (A)x`
)?

Using lemma 3.0.14 this intersection is simply
⊗

` P
rec(A)x`

. This proves the result.

The previous proposition proves that if f : P (A)y → k is representative then ∆f ∈ [P xy ,
⊗

i P
rec(A)xi

] =
P∧(P rep(A)). Equivalently, we have a commutative triangle

P∧(P rep(C?))

��
P rep(C?) //

77

P∧(P (C?)?).

26

3.3 Cofree coalgebras and representative functions

Here is the main consequence of proposition 3.2.4.

Theorem 3.3.1. Q1(C) is a P -coalgebra, moreover this structure is natural in C.

Proof. We consider the following diagram

P∧(Q1(C))

�� ''
Q1(C) //

%%

44

(P∧)2(C)

''

P∧(P rep(C?))

��
P rep(C?) //

33

P∧(P (C?)?)

The existence of the front face is a reformulation of proposition 3.2.4. The right face is the image by P∧ of the
left face of the cube of lemma 3.1.3). This face is a cartesian square of monomorphisms, by lemma 3.0.15, the image
by P∧ is still a cartesian square of monomorphisms. Finally, the dashed arrow is constructed using the cartesian
structure of the right face. The map δ : Q1(C)→ P∧(Q1(C)) will be the coalgebra structure on Q1(C). δ is natural
in C since all maps of the diagram are.

To prove the coassociativity we consider the following diagram.

(P∧)2Q1

(P∧)2(χ1)

��
P∧Q1

P∧(δ)

88

P∧(δ1) //

P∧(χ1)

��

%%

(P∧)3

��

(P∧)2Q1

��

Q1
δ1 //

δ

??

χ1

��

(P∧)2 //

��

%%

P∧P∧2

��

P∧2 P
∧

��

P∧ // P∧2 //

%%

P∧3

P∧3

27

We have not indicated the name of all maps, hoping the missing ones should be clear enough, they are all constructed
from χ1, and the structure maps of the lax comonad P∧. The diagram is not fully commutative. The back squares
and triangles are commutative, the left and right sides of the prism are also commutative, but the top and bottom
triangle are not. Since everything is natural in C, we have withdrawn it from the notation.

The coassociativity is equivalent to the commutation of the top fork. The diagram reduce this condition to the
commutation of the bottom fork because vertical maps are monomorphisms. The commutation of the bottom fork
is a consequence of the simplicial diagram of P∧n .

The counit condition is left to the reader.

The next result proves that the recursion of section 2.7 stops at the first step.

Corollary 3.3.2. Q1 is the cofree P -coalgebra functor.

Proof. With the notations of section 2.7, we want to prove that Q1 = Q∞. It is actually enough to prove that
Q2 = Q1 since the whole tower will be constant under this hypothesis.

Since Q1(C) is a P -coalgebra, it is a Q∞-coalgebra, hence there exists a map δ : Q1(C) → Q∞Q1(C) lifting
Q1(C) → P∧Q1(C) and satisfying a coassociativity condition. Using the projections Q∞ → Q1 and Q1 → P∧ we
get from this condition a commutative diagram

(Q1)2(C)
////

��

(Q1)3(C) // (P∧)3(C)

Q1(C) //

δ

66

(P∧)2(C).

By definition of Q2, we get a map Q1(C)→ Q2(C) but since Q2(C)→ Q1(C) is a monomorphism, this proves that
Q1 = Q2 and the result.

In other terms, the cofree P -coalgebra P∨(C) on C is the subobject of P∧ defined by the fiber product

P∨(C) //

��

(P∧)2(C)

��
P∧(C) // P∧2 (C).

Remark 3.3.3. This proves also that the recursion of [Smith] stops at the first step since our Q1 is his L1 (see
remark 2.7.4).

References

[Anel-Joyal] M. Anel, A. Joyal, Sweedler theory of (co)algebras and the bar-cobar constructions, preprint.

[Block-Leroux] R. Block, P. Leroux, Generalized dual coalgebras of algebras, with applications to cofree coalgebras,
J. Pure Appl. Algebra 36 (1985), no. 1, 15-21.

[Fox] T. Fox, The construction of cofree coalgebras, J. Pure Appl. Algebra 84 (1993) 191?198, http://www.math.
mcgill.ca/fox/papers.html.

28

[Gambino-Joyal] N. Gambino, A. Joyal, On operads, bimodules and analytic functors, preprint.

[Hazewinkel] M. Hazewinkel, Cofree coalgebra and multivariable recursiveness, J. Pure Appl. Algebra 183 (2003),
no. 1-3, 61-103.

[Loday-Vallette] J.L. Loday, B. Vallette, Algebraic operads, Grundlehren der mathematischen Wissenschaften, Vol-
ume 346, Springer-Verlag (2012).

[Smith] J. Smith, Cofree coalgebras over operads, Topology and its Applications

[Sweedler] M. Sweedler, Hopf Algebras, W. A. Benjaminm New York, 1969.

29

	Introduction
	The cofree coalgebra
	Analytic functors
	Einstein convention
	Operads and associated functors
	Coalgebras over an operad
	The comonad of coendomorphisms
	Lax comonads and their coalgebras
	The coreflection theorem

	Operadic representative functions
	Representative functions
	Translations and recursive functions
	Cofree coalgebras and representative functions

